Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 82(4-5): 457-71, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23689818

RESUMEN

A complex of R2R3-MYB and bHLH transcription factors, stabilized by WD40 repeat proteins, regulates gene transcription for plant cell pigmentation and epidermal cell morphology. It is the MYB component of this complex which specifies promoter target activation. The Arabidopsis MYB TT2 regulates proanthocyanidin (PA) biosynthesis by activating the expression of ANR (anthocyanidin reductase), the gene product of which catalyzes the first committed step of this pathway. Conversely the closely related MYB PAP4 (AtMYB114) regulates the anthocyanin pathway and specifically activates UFGT (UDP-glucose:flavonoid-3-O-glucosyltransferase), encoding the first enzyme of the anthocyanin pathway. Both at the level of structural and regulatory genes, evolution of PA biosynthesis proceeded anthocyanin biosynthesis and we have identified key residues in these MYB transcription factors for the evolution of target promoter specificity. Using chimeric and point mutated variants of TT2 and PAP4 we found that exchange of a single amino acid, Gly/Arg(39) in the R2 domain combined with an exchange of a four amino acid motif in the R3 domain, could swap the pathway selection of TT2 and PAP4, thereby converting in planta specificity of the PA towards the anthocyanin pathway and vice versa. The general importance of these amino acids for target specificity was also shown for the grapevine transcription factors VvMYBPA2 and VvMYBA2 which regulate PAs and anthocyanins, respectively. These results provide an insight into the evolution of the different flavonoid regulators from a common ancestral gene.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proantocianidinas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Factores de Transcripción/química , Factores de Transcripción/genética
2.
PLoS One ; 8(5): e62467, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23650515

RESUMEN

In Catharanthus roseus, the monoterpene moiety exerts a strong flux control for monoterpene indole alkaloid (MIA) formation. Monoterpene synthesis depends on the methyl-D-erythritol 4-phosphate (MEP) pathway. Here, we have explored the regulation of this pathway in response to developmental and environmental cues and in response to specific enzyme inhibitors. For the MEP pathway entry enzyme 1-deoxy-D-xylulose 5-phosphate synthase (DXS), a new (type I) DXS isoform, CrDXS1, has been cloned, which, in contrast to previous reports on type II CrDXS, was not transcriptionally activated by the transcription factor ORCA3. Regulation of the MEP pathway in response to metabolic perturbations has been explored using the enzyme inhibitors clomazone (precursor of 5-ketochlomazone, inhibitor of DXS) and fosmidomycin (inhibitor of deoxyxylulose 5-phosphate reductoisomerase (DXR)), respectively. Young leaves of non-flowering plants were exposed to both inhibitors, adopting a non-invasive in vivo technique. Transcripts and proteins of DXS (3 isoforms), DXR, and hydroxymethylbutenyl diphosphate synthase (HDS) were monitored, and protein stability was followed in isolated chloroplasts. Transcripts for DXS1 were repressed by both inhibitors, whereas transcripts for DXS2A&B, DXR and HDS increased after clomazone treatment but were barely affected by fosmidomycin treatment. DXS protein accumulated in response to both inhibitors, whereas DXR and HDS proteins were less affected. Fosmidomycin-induced accumulation of DXS protein indicated substantial posttranscriptional regulation. Furthermore, fosmidomycin effectively protected DXR against degradation in planta and in isolated chloroplasts. Thus our results suggest that DXR protein stability may be affected by substrate binding. In summary, the present results provide novel insight into the regulation of DXS expression in C. roseus in response to MEP-pathway perturbation.


Asunto(s)
Catharanthus/enzimología , Inhibidores Enzimáticos/farmacología , Eritritol/análogos & derivados , Proteínas de Plantas/metabolismo , Fosfatos de Azúcar/metabolismo , Transferasas/metabolismo , Catharanthus/efectos de los fármacos , Cloroplastos/efectos de los fármacos , Cloroplastos/enzimología , Clonación Molecular , Cicloheximida/farmacología , ADN Complementario/genética , Eritritol/metabolismo , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Isoenzimas/genética , Isoenzimas/metabolismo , Isoxazoles/farmacología , Redes y Vías Metabólicas , Especificidad de Órganos , Oxazolidinonas/farmacología , Paraquat/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Regiones Promotoras Genéticas , Proteolisis , Transferasas/antagonistas & inhibidores , Transferasas/genética
3.
Protoplasma ; 249 Suppl 2: S109-18, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22307206

RESUMEN

Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000 compounds detected so far in higher plants. They are found in various compositions and concentrations in nearly all plant tissues. Besides the attraction of pollinators and dispersers to fruits and flowers, flavonoids also protect against a plethora of stresses including pathogen attack, wounding and UV irradiation. Flavonoid content and composition of fruits such as grapes, bilberries, strawberries and apples as well as food extracts such as green tea, wine and chocolate have been associated with fruit quality including taste, colour and health-promoting effects. To unravel the beneficial potentials of flavonoids on fruit quality, research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.). Transcription factors and genes encoding biosynthetic enzymes have been characterized, studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity. This review summarizes recent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine. Transcriptional regulation of flavonoid biosynthesis during berry development is highlighted, with a particular focus on MYB transcription factors as molecular clocks, key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes.


Asunto(s)
Vías Biosintéticas , Flavonoides/biosíntesis , Factores de Transcripción/metabolismo , Vitis/metabolismo , Vías Biosintéticas/genética , Biotecnología , Flavonoides/química , Modelos Genéticos , Vitis/genética
4.
Plant Cell Environ ; 34(2): 192-207, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20880203

RESUMEN

Selenium (Se)-fortified broccoli (Brassica oleracea var. italica) has been proposed as a functional food for cancer prevention, based on its high glucosinolate (GSL) content and capacity for Se accumulation. However, as selenate and sulphate share the initial assimilation route, Se fertilization could interfere with sulphur metabolism and plant growth. Consequently, GSL accumulation could be compromised. To evaluate these potentially adverse effects of Se fertilization, we performed a comprehensive study on sand-grown young broccoli plants (weekly selenate applications of 0.8 µmol plant(-1) via the root) and field-grown adult broccoli plants during head formation (single foliar selenate application: 25.3 or 253 µmol plant(-1) ). The results show that under these conditions, Se application does not affect plant growth, contents of cysteine, glutathione, total GSL, glucoraphanin (major aliphatic GSL) or the expression of BoMYB28 (encoding a functionally confirmed master regulator for aliphatic GSL biosynthesis). Conversely, due to the changed expression of sulphate transporters (BoSULTR1;1, 1;2, 2;1, and 2;2), sulphate and total S contents increased in the shoot of young plants while decreasing in the root. We conclude that broccoli can be fertilized with Se without reduction in GSL content, even with Se accumulation exceeding the level recommended for human consumption.


Asunto(s)
Brassica/metabolismo , Glucosinolatos/análisis , Selenio/farmacología , Azufre/metabolismo , Secuencia de Aminoácidos , Anticarcinógenos/metabolismo , Transporte Biológico , Brassica/química , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Fertilizantes , Alimentos Funcionales , Glucosinolatos/biosíntesis , Glucosinolatos/metabolismo , Imidoésteres , Datos de Secuencia Molecular , Oximas , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Ácido Selénico , Selenio/metabolismo , Compuestos de Selenio/química , Compuestos de Selenio/metabolismo , Sulfatos/química , Sulfatos/metabolismo , Sulfóxidos
5.
Mol Plant ; 3(3): 509-23, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20118183

RESUMEN

Previous results indicated that in grapevine (Vitis vinifera), regulation of the flavonoid pathway genes by MYB transcription factors depends on their interaction with basic helix-loop-helix proteins (bHLHs). The present study describes the first functional characterization of a bHLH factor from grapevine named VvMYC1. This transcription factor is phylogenetically related to Arabidopsis bHLH proteins, which participate in the control of flavonoid biosynthesis and epidermal cell fate. Transient promoter and yeast two-hybrid assays demonstrated that VvMYC1 physically interacts with MYB5a, MYB5b, MYBA1/A2, and MYBPA1 to induce promoters of flavonoid pathway genes involved in anthocyanin and/or proanthocyanidin (PA) synthesis. Additionally, transient promoter assays revealed that VvMYC1 is involved in feedback regulation of its own expression. Transcript levels of VvMYC1 during berry development correlate with the synthesis of anthocyanins and PAs in skins and seeds of berries, suggesting that VvMYC1 is involved in the regulation of anthocyanins and PA synthesis in these organs. Likewise, transient expression of VvMYC1 and VvMYBA1 induces anthocyanin synthesis in grapevine suspension cells. These results suggest that VvMYC1 is part of the transcriptional cascade controlling anthocyanin and PA biosynthesis in grapevine.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flavonoides/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Antocianinas/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Flavonoides/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proantocianidinas/biosíntesis , Transducción de Señal/genética , Transducción de Señal/fisiología , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...